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I.  Statement of the problem studied 

Photonic metamaterials (MMs) are artificial nanostructures that emerge as a source of nearly unlimited 

opportunities for the realization of material properties that were not previously accessible, including 

positive, negative, and even zero indices of refraction. The emergence of metamaterials and, in particular, 
negative index metamaterials (NIMs) triggers reconsideration of many fundamental physical phenomena. 

Importantly, the majority of unique properties of NIMs stand out when NIMs are combined with 

conventional positive index materials (PIMs). Unique applications of MMs include super-lenses that beat 

the fundamental diffraction limit and enable high-resolution optical imaging, and cloaking devices that 
render macroscale objects invisible. In this project, we investigated fundamental linear and nonlinear 

phenomena in magnetic, negative-index and graded-index MMs. Designed using the technique of 

transformation optics; these structures enable a number of new regimes of light-matter interaction and 
potential applications in both linear and nonlinear optical regimes. 

Highlights of the most important results: 

-- We investigated the fundamental question of how electromagnetic waves propagate in an important 

class of inhomogeneous metamaterials, with material properties gradually changing from positive to 
negative values (“transition metamaterials”). We discovered strongly polarization sensitive anomalous 

field enhancement near the zero refractive index point under oblique incidence of the wave on a realistic, 

lossy transition metamaterial layer potentially enabling a variety of applications in microwave, terahertz, 

and optical metamaterials, including subwavelength transmission and low-intensity nonlinear optical 
devices. 

-- We developed a generalized analytical model and solutions for nonlinear wave propagation in 
waveguide couplers with opposite signs of the linear refractive index, non-zero phase mismatch between 

the channels, and arbitrary nonlinear coefficients. These results offer a practical tool for designing novel 

metamaterials based couplers based on either double-negative or strongly anisotropic metamaterials that 
are likely to enable ultra-compact optical storage and memory components for photonics on a chip 

applications. 

-- We proposed and investigated in detail a structure consisting of a nonlinear core with focusing or de-
focusing Kerr nonlinearity and graded-index shell designed using transformation optics that can be 

switched from a concentrator squeezing light into the core to a variable focus lens by varying the intensity 

of incident light. 

-- As an extension of this project, we performed preliminary studies of the wave and ray properties of 

electromagnetic wave interactions in two-dimensional microcavities that contain a combination of PIM 
and NIM with negative dielectric permittivity and magnetic permeability. These studies indicate that 

NIM-PIM disk resonators can be specifically designed to emit intense radiation in a controlled manner. 

Our preliminary results show that the new NIM-PIM micro-cavities show evidence for the chaotic 

behavior and scar modes. Future studies include the investigations of localized gain for selective 
amplification, PIM-NIM cavities with loss and/or gain and optical nonlinearities. 

-- We designed and experimentally demonstrated optical fiber-coupled magnetic metamaterials integrated 
on the transverse cross-section of an optical fiber. Such fiber-metamaterials integration may provide 
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fundamentally new solutions for photonic-on-a-chip systems for sensing, subwavelength imaging, image 

processing, and biomedical applications. 

II. Summary of the most important results 

Metamaterials constitute a new, 21st century area of research that is expanding fundamental knowledge of 

the behavior of electromagnetic wave propagation and present potential novel solutions to the realization 

of entirely new photonic functionalities such as sub-wavelength imaging, invisibility cloaking, and all-

optical signal processing.  

1.1 Field enhancement effects in near-zero refractive index MMs – towards low-intensity nonlinear optics 

The emergence of negative index materials (NIMs) has given rise to numerous unusual phenomena that 

cannot be realized in conventional materials. These materials have revolutionized modern optics by 

providing unparalleled potential opportunities for designing novel applications, including nano-imaging 
and sensing devices, solar cells and light-emitting devices. Owing to the structural complexity of these 

composite materials, theoretical predictions and numerical analysis are the essential components of NIMs 

research. 

Significant progress in the understanding of MM fundamentals and recent developments in fabrication 

technologies have given rise to the field of transformation optics.  Transformation optics is based on MMs 

with a tailored spatial distribution of the refractive index, which can vary from positive to negative values.  

While the optical properties and potential applications of uniform MMs with constant refractive indices 

have been studied in detail and are quite well understood, graded-index MMs – artificial materials with 
refractive indices gradually varying in space in a wide range from positive to zero to negative values – 

have received significantly less attention so far. The enormous potential of graded-index MM structures 

was recently exemplified by the first experimental 
demonstration of an invisibility (cloaking) device. 

However, cloaking is just one of numerous 

prospective applications of these structures. 

Nevertheless, no fundamental physical models, 
design and optimization numerical tools, or 

experimental platforms exist to date to fully 

explore their unique properties. Our research is 
focused on the development of theoretical and 

numerical models for understanding, modeling and 

controlling linear and nonlinear interactions of 

light with graded-index photonic MMs and their 
device applications. 

In particular, we predicted and investigated the 
resonant enhancement of electromagnetic waves 

propagating at oblique incidence in MMs near a 

point where the real part of the refractive index is 
zero, as shown in Fig. 1. This effect occurs for 

both TE and TM polarizations near the point where 

the refractive index changes its sign at it transitions 

through zero. Our model elucidates the unique 
features of the resonant enhancement in “positive-

to-negative transition” MMs for a broad frequency 

range from microwaves to optics. We performed a 

 

Figure 1. Upper plot: A schematic of transition 

metamaterial. Lower plot: Resonant field 

enhancement near zero-index transition. 
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detailed study of the effect of resonant absorption in transition MMs with various refractive index 

profiles. The results of this parametric study may be of considerable interest for a variety of MMs-based 
applications.  Depending on the application, the amount of resonant absorption may be minimized or 

maximized by changing the parameters of the transition layer and more generally the spatial profiles of 

material parameters. For example, resonant absorption may affect the performance of a superlens with 

diffused boundaries or other structures based, for example, on doped semiconductors, and therefore, 
needs to be minimized. On the other hand, applications such as “perfect” absorbers or nanodetectors 

would benefit from the resonant absorption effect that in this case should be maximized. Moreover, our 

results could be of considerable importance in the context of transformation optics as the inherent near 
zero index transition phenomena in graded-index structures could significant change spatial field 

distributions and lead to undesired absorption.  

Also, we demonstrated that more complex refractive index distributions with, for example, two zero-

index crossings (Fig. 2), may result in a formation of highly polarization sensitive resonant cavities. 

Potential applications of these local field enhancement effects include for low-intensity nonlinear optical 

devices, including switching and antenna applications. Our current research directions in this area 
include: 

i. Micro- to- nano-scale optical tapers: in this project, we design a micro- to- nano-scale optical 
taper: a device that guides and concentrates light to a sub-wavelength spot for applications including 

optoelectronic integrated circuits, sensors, and photovoltaics. This device would offer a viable solution to 

one of the major problems of modern optoelectronics – bridging the gap between micro-scale photonic 
waveguides (e.g., optical fibers) and nano-scale optical and electronic devices. In this project, we utilize 

the strong enhancement of the field near the zero-index point and an anisotropic refractive index profile 

designed via the transformation optics technique. 

ii. Novel nonlinear wavelength converters: this application relies on the predicted resonant field 
enhancement near the zero refractive index point in combination with the nonlinear response of the MMs 

host medium. Our research concentrates on applications based on both second- and third-order 

nonlinearities. An important advantage of this approach over the existing solutions is the potentially low 

  

Figure 2. Left: (a) Schematics of a transition metamaterial with ε and µ crossing zero at the same point. 

(b) Schematics of a transition metamaterial with ε and µ crossing zero at two different points in space. 

Right: Figures (a) and (b) show the absolute values of the magnetic field component for the TE wave Hx as 

functions of x=h for two different values of the parameter l [l = 2 (a) and l = −4 (b)]. Figures (c) and (d) 

show corresponding results for the TM polarization. In this case, the longitudinal component of the electric 

field (Ex) is enhanced and, therefore, we show the absolute values of the electric field component Ex as 

functions of x=h for two different values of the parameter l [l = 2 (a) and l = −4 (b)]. 
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input power requirements owing to the strong field localization effect that enables nonlinear effects at 

moderate intensities. New regimes of nonlinear conversion are expected owing to unusual phase-
matching conditions that may be enabled at the PIM-NIM interface. 

 

1.2 Anisotropic transition metamaterials 

The outstanding question is how to realize such transition metamaterial in practice. Recently, it was 

shown that strongly anisotropic materials that have negative permittivity component along the direction 

perpendicular to the interface of the structure and positive component along the interface, so-called 
hyperbolic metamaterials, the component of the Poynting vector along the interface is opposite to the 

direction of the wavevector 

component along the interface, 

leading to the effective negative 
refractive index. Since 

manipulating magnetic 

permeability at optical 
frequencies, although has been 

demonstrated, is still 

challenging, this non-magnetic 
anisotropic metamaterials-based 

approach to achieving effective 

negative refractive index is very 

attractive.  

In our work, we designed 

anisotropic transition materials 

and study the electromagnetic 

 

 

Figure 3. Upper plot: the structure consisting of isotropic material on the left and anisotropic hyperbolic 

metamaterial on the right. In this structure dielectric permittivity is changed along x direction by changing filling 

fraction of the metal. Lower plot: evolution of dispersion relation from a circle to an ellipse and then to a 

hyperbola. 
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Figure 4.  Color map and a line plot demonstrating the effect of anomalous 

field enhancement near zero-epsilon transition. 
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wave propagation through such structures. Schematic of the structure is as shown in Fig. 3. It has 

isotropic material on the left and anisotropic hyperbolic material on the right. Varying filling fraction of 

metal results in variation of ��. The dispersion relation is circular when ��= ��> 0, (this is the case of an 

isotropic media). Now slowly decreasing ��   would result in a case where �� , ��> 0 but ��≠�� and now 

the dispersion relation is elliptical in shape. Further decreasing ��  such that ��<0 while ��>0 would result 

in a hyperbolic dispersion relation. 

A metal-dielectric layered media constituting of metal permittivity �� and dielectric permittivity �� of 

permittivity results in anisotropic structure such that x and y components of the permittivities of the 

structure are different, that is, ��≠��. According to Maxwell Garnett effective medium approximations; ��  

and ��for such a structure are given by 

�� � 	��	�� 		��	�� 

 

�� � 	
�� 	��

����	 		����	
 

 

where ��	and ��	are filling fractions of metal and dielectric, such that ��	 	 ��	 � 1, in our case we 

consider �� � 	�3.0 	 0.1� and �� � 12. 

 
Dispersion relation for anisotropic media is given by 

��
�

��
		
��

�

��
�
��

��
 

 

where ��  , �� are projections of k vector on x and y axes respectively; �� , �� are permittivity components 

along x and y axes respectively. Resonant field enhancement in such a medium is shown in Fig. 4. 

 
Finally, while our inititial studies were focused on a monochromatic plane wave propagation in transition 

metamaterials, recently, we developed a finite difference time domain method (FDTD) based code that 

allows us to study pule propagation in these structures. In this case, we assume that both dielectric 
permittivity and magnetic permeability are dispersive. Using our FDTD code, we investigated 

electromagnetic wave propagation through transition dielectric - metamaterial layer, with two different 

shapes shown in Fig. 5. Here the discretization steps for space ( = =h x y∆ ∆ ∆ ) and time ( t∆ ) is chosen 

        

Figure 5. Left: Transition layer profiles. Right: Field distribution of 
x

H  component at the time step 

= / = 3000n t t∆  for dashed profile of refractive index. 
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to fulfill the stability requirement of the FDTD method, a so-called Courant condition. An example result 

of calculations is shown in Fig. 5.  

1.3 Instabilities in nonlinear optical MMs  

One of the major requirements for the realization of efficiently performing optoelectronics circuits is the 
ability to buffer optical signals so that the data traffic jams are prevented. An optical buffer is a device 

that slows down (or even stops) light to store it for a certain period of time. Although several approaches 

to the realization of such structures have been demonstrated a majority of slow light schemes based on 

various waveguide geometries are not easily scalable to a chip-size footprint.  

It is well known that optical bistability, a phenomenon in which two different values of output power are 

possible for the same input power, finds numerous applications in optical memory and storage devices. 

Therefore, realized in compact configuration, it can provide a viable solution for all-optical on-chip 
storage applications.  

Metamaterials (MMs) were shown to enable subwavelength waveguides and cavities – a property that 

fundamentally differentiates them from conventional materials based light wave components. Therefore, 

in this work, we investigate the most general solution for wave interactions in positive-negative index 
MM based nonlinear optical couplers (shown in Fig. 6). It should be mentioned that nonlinear optical 

couplers made of conventional positive index materials (PIMs) are not bistable (unless some additional 

components providing optical feedback are introduced). However, in MM based couplers, bistability 
results from the effective feedback mechanism enabled by the opposing directionality of phase and energy 

velocities in negative index materials (NIMs). Moreover, such a coupler supports gap solitons—a feature 

commonly associated with periodic structures. These unusual properties of MM directional couplers form 
a basis for the development all-optical processing applications, including wavelength converters, flip-

flops, and mirrorless lasers.  

Our previous studies focused on particular cases of phase-matched symmetric couplers with identical 

nonlinear properties, and on asymmetric couplers with only one nonlinear channel. In this work, we found 
a generalized analytical solution in the presence of phase mistmatch and for arbitrary values of nonlinear 

coefficients of both channels. The availability of such a solution enables novel optimized designs of such 

couplers. In particular, we investigate the effects of bistability and modulational instabilities in positive-
negative index based nonlinear optical couplers. Optical bistability is a phenomenon in which two 

different values of output power are possible for the same input power. This phenomenon finds numerous 

applications in optical memory and storage devices.  It should be mentioned that nonlinear optical 

  

Figure 6. Left: Positive-negative index nonlinear optical coupler. Right: Output power P1(L) as a function of 

input power P1(0) when κ = 8, γ1 = γ2 = −5 (self-defocusing nonlinearity). Solid black curve: δ = 0; dashed 

blue curve: δ = 10; dot-dashed red curve δ= −10. 
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couplers made of conventional positive index materials are not bistable (unless some additional 
components such as Bragg gratings or mirrors are introduced). However, in MMs-based couplers, 

bistability results from the effective feedback mechanism enabled by opposing directionality of the wave 

vector and the Poynting vector in NIMs. Moreover, such a coupler supports gap solitons—a feature 
commonly associated with periodic structures. These effects have no analogies in conventional couplers. 

These unusual properties of MM directional couplers form a basis for the development all-optical 

processing applications, including wavelength converters, flip-flops, and mirrorless lasers. Moreover, 
MMs allow for ultra-compact (subwavelength) design of such couplers. 

We found a generalized analytical solution for nonlinear wave interactions in PIM-NIM couplers in the 

presence of phase mistmatch and for arbitrary values of nonlinear coefficients in both channels. These 

results offer a practical tool for designing novel MM based couplers based on either double-negative or 
strongly anisotropic MMs that are likely to enable ultra-compact optical storage and memory components 

for photonics on a chip applications. 

Although the analysis of the PIM-NIM coupler in this work was based on coupled-mode equations 
assuming effective medium parameters for the dielectric permittivity and magnetic permeability of MMs, 

in practice such aNIM channel (which is the most challenging part of the proposed device) can be realized 

in at least two configurations:  i) using double-negative resonant MMs, and ii) using strongly anisotropic 
MM waveguides. Such waveguides were shown to support negative-index propagating modes. For these 

modes, the wave propagation is in a direction opposite to the phase velocity. As a result, the waveguide 

behaves as a 2-dimensional counterpart of 3-dimensional negative index material. Such a waveguide can 

be designed using alternating metal and dielectric subwavelength layers with positive and negative 
permittivities, respectively. As a nonlinear optical material, we envision incorporate chalcogenide glasses 

or nonlinear polymers that possess relatively high nonlinear refractive indices.  

1.4 Nonlinearly Tunable MMs 

Since the first experimental demonstration of optical MMs it became clear that the possibility of 

controlling of their parameters at the post-fabrication stage — tunability — is one of the key steps toward 
their practical applications. Indeed, to take full advantage of the designer properties of MMs, a method to 

tune the electromagnetic response of the MM, preferably over a broad frequency range in as short of time 

as possible, is required. To date, nearly all demonstrations of actively tuned MMs have been achieved by 

varying the capacitance of a split ring resonator. This inherently limits the tuning to the magnetic 
response and to frequencies in the terahertz or lower. The very first designs of tunable MMs in the optical 

frequency range were based on using nematic liquid crystals. In both works, tunability was achieved by 

changing the dielectric function of the nematic liquid crystals using linear effects, either using DC voltage 
or thermal sources.  

           

Figure 7. Left: design of nonlinear metamaterials. Right: Transmission as a function of input intensity (inset 
shows the distribution of refractive index in a nonlinear magnetic metamaterial). 
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We investigated a radically different approach that uses strong Kerr nonlinearity of the nematic liquid 

crystals to control the location of the magnetic and electric resonances in the coupled-nanostrip and 
fishnet-based MM structures. We studied the interaction of intense fields with such structures which are 

covered by a nematic liquid crystal, a design that is most realistic and efficient in terms of fabrication and 

tunability. For example, our numerical simulations performed based on COMSOL Multiphysics platform 

showed that a 0.3 W/cm2 CW plane-wave can induce a shift of ~15 nm in the location of the transmission 
minimum at the magnetic resonance. This change is comparable to the relative change reported in MMs 

in the microwave range. Moreover, since the new approach employs the significant near-field 

enhancement of the electric field, and thus, the localized nonlinear response, the resulting optically-
tunable shift is larger than the shift induced with a uniform linear bias-field of a similar magnitude.  

Finally, we performed detailed design and optimization of metal-dielectric and all semiconductor-based 
nonlinear NIMs. To date, nonlinear NIM have not been demonstrated at optical frequencies where they 

are expected to lead to a number of new phenomena and applications, including backward-phase 

matching, new regimes of second harmonic generation, and parametric amplification.  We progress 

toward nonlinear NIM fabrication (using focused ion beam lithography) and optical characterization 
(using z-scan, transmission and reflection measurements, and spectroscopic ellipsometry). The end goal 

of this project is to demonstrate the first nonlinear NIMs at optical frequencies and use them for sensing, 

wavelength conversion, and other applications.   

Recently, we developed an efficient method for introducing third-order nonlinearities in optical 

nanostructured materials, including photonic metamaterials. Fig. 7 presents an example of a nonlinear 
magnetic metamaterial structure (one unit cell of such structure is shown) that was designed and studied 

using this approach. Our preliminary theoretical results predict a number of novel effects in such 

nanostructures, such as the higher order resonances shown in Fig. 8. The method uses scalar magnetic 

field frequency domain formulation; it is shown to produce fast and accurate results without superfluous 
vector electric field formalism. A standard TM representation using a cubic non-linear susceptibility is 

problematic due to an intractable implicit equation; our technique alleviates this problem. This new two-

dimensional magnetic field formulation was found to exhibit substantially faster performance and 
converged over a broader range of nonlinearities compared with the three dimensional formulation. 

 

1.5 Variable focus nonlinear lenses 

By leveraging the capabilities of photonics (speed) and of electronics (compactness), it should be possible 

to realize high performance integrated opto-plasmonic systems with applications from high bandwidth 
communications to sensing, and beyond.  Such integration requires the availability of ultra-compact, 

ultra-fast, reconfigurable and tunable photonic components.  

We proposed and designed one of such reconfigurable electromagnetic (EM) components with variable 

focus such that its output field profile can be tuned from an unfocussed beam to a highly localized beam 
with extended focal region that can be moved from infinity towards the lens surface by changing the 

 

    Figure 8. Higher order resonances in metamagnetic plasmonic structure. 
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intensity of the incident beam (Fig. 9). Two configurations of such device will be discussed: i) self-

focusing beam and ii) all-optically externally controlled focusing. 

In cylindrical coordinate system, the space of a concentrator is divided into two regions; the core and the 

shell. The shell of the concentrator channels the incident field into the core where it is concentrated.  The 

transformation needed to ‘squeeze’ light into the core in reduced parameters can be described by:  
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Tunable lens proposed here utilizes a nonlinear 

core element. We use Kerr-type nonlinear 
medium having a cubic nonlinearity defined by 

χ 
(3)

. Nonlinear phenomena change the optical 

properties of the core as the refractive index of 
the core dependent on the intensity of the 

incident electric field. In materials that exhibit 

third-order nonlinearity, index of refraction n 

can be expressed as  � � �� 	 ��I. 

Computation domain is terminated by perfectly 

matched layers (PMLs) to absorb the scattered 

field. Structure is illuminated by a TE polarized 
plane wave incident from left having a 

wavelength of 1.5 µm. The core has a nonlinear 

refractive index as described in the previous 
section. Our variable focus nonlinear lens based 

device acts as a concentrator when it is 

operating in linear regime. As can be seen, all 

the power is concentrated inside the core region 
of the device.  As the intensity of the incident 

field is increased, the refractive index of the 

core increases because of the presence of 
nonlinearity. Electromagnetic radiation is 

slowed down inside the core and the part of the 

wave that travels the farthest is delayed the 

 

Figure 9. Finite-element method based simulations of 
variable focus nonlinear lens for different values of 

input light intensity. Intensity increases from (a) to (f). 
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most, which results in a net 

curvature and hence focusing of 
the field. The device behaves like a 

lens and focusses field such that 

the intensity is confined to a 

narrow, localized spot. The 
location of that focal spot moves 

from infinity (linear case) towards 

the lens as shown in Fig. 9 when 
intensity of incident field is 

increased.  

We demonstrated a tunable 

structure which can be switched 

from the functionality of a 

concentrator to that of lens which 
has a variable focus that is tunable 

based on the intensity of the incident electric field. By using variable focus nonlinear lens, we can achieve 

sub-wavelength tunability of the focus point. This device may find applications for the development of 
ultra-compact optical components for all optical circuits.

 
1.6 Chaos in metamaterial cavities 

As an extension of this project, we considered the wave and ray properties of electromagnetic wave 

interaction in two-dimensional microcavities that contain a combination of PIM and NIM with negative 

dielectric permittivity and magnetic permeability. By using a combination of analytic and numerical 

methods we are able to classify the different types of possible solutions in this type of mixed PIM-NIM 
regions.  

In particular, we investigated the special properties of whispering gallery modes as well as the 
constructive and destructive 

interference due to wave 

refraction/reflection across different 
refractive media boundaries. We 

considered closed and open cavities 

and predict chaotic behavior, and in 

particular, so-called scar modes (Fig. 
10). We explored practical 

applications of this type of 

metamaterial micro-cavities, including 
selective amplification of scar modes 

and optical nonlinearities. 

1.7 Fiber metamaterials 

To date, magnetic and negative-index metamaterials at optical frequencies were realized on bulk 
substrates in the form of thin films with thicknesses on the order of, or less than, optical wavelengths. We 

designed and experimentally demonstrated, for the first time, fiber-coupled magnetic metamaterials 

integrated on the transverse cross-section of an optical fiber (Fig. 11). Such fiber-metamaterials 

integration may provide fundamentally new solutions for photonic-on-a-chip systems for sensing, 
subwavelength imaging, image processing, and biomedical applications. 

  

         

Figure10. Examples of PIM-NIM cavities that produce scar modes. 

 

         

Figure 11. Fiber metamaterials. Left: schematic view. Right: 

experimental samples. 
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